# STRUCTURE DE LA GOUREGINE, ALCALOÏDE ORIGINAL APPARENTE AUX CULARINES<sup>1</sup>

# + Michel LEBŒUF<sup>\*</sup>, Diego CORTES<sup>2</sup>, Reynald HOCQUEMILLER et André CAVÉ ++ Angèle CHIARONI et Claude RICHE

† Laboratoire de Pharmacognosie, E.R.A. 317 C.N.R.S., Faculté de Pharmacie, 92290 - CHATENAY-MALABRY, France †† Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 - GIF-SUR-YVETTE, France

(Received in France 23 June 1982)

Abstract : The structure of gouregine, a new isoquinoline alkaloid from Guatteria ouregou, Annonaccae, has been deduced by spectral analysis and confirmed by an X-ray structure determination. It is the first member of a new class of cularine-related alkaloids ( $\alpha$ -gem-dimethyltetradehydrocularines).

La gouregine <u>1</u> a été isolée des écorces de tiges d'une Annonacée guyanaise, <u>Guatteria ouregou</u> Dun., d'où elle est extraite en même temps que des alcaloïdes de type aporphinoïde<sup>3</sup>, en particulier la melosmine <u>4</u> récemment découverte chez une autre Annonacée sud-américaine, <u>Guatteria melosma</u> Diels<sup>4</sup>.

Cristallisant du méthanol, F 112-114°C,  $[\alpha]_n=0$ , la gouregine <u>1</u> répond à la formule brute  $C_{20}H_{19}NO_5$ , déterminée par analyse élémentaire et par SM à haute résolution (M<sup>+</sup>• 353,1265 ; calculé 353,1263). Sur le spectre de masse [m/z (%) : 354 (20), 353 (100), 352(8), 329 (21), 338 (85), 323 (5), 322 (6), 308 (7)], on note l'importance du pic moléculaire et de la fragmentation correspondant à M-15. Le spectre UV de <u>1</u> [EtOH,  $\lambda$ max nm (log  $\epsilon$ ) 229 (4,28), 247 (4,25), 291 (3,50), 348 (3,45)] subit un déplacement bathochrome et hyperchrome en milieu alcalin [260 (4,47), 307 (4,15), 379 (3,98)] et un effet bathochrome en milieu acide [231 (4,22), 274 (4,27), 304 (3,35), 404 (3,35)].

La comparaison des spectres <sup>1</sup>H RMN (Tableau I) et <sup>13</sup>C RMN (Tableau II) de la gouregine <u>1</u> et de la melosmine <u>4</u><sup>2</sup> révèle la parenté structurale évidente de ces deux alcaloïdes : cycle A trisubstitué, cycle B aromatique, présence d'un groupe gem-diméthyle sur le  $C-\alpha$ , cycle D monosubstitué dont les trois protons forment un système AMX caractéristique : gouregine <u>1</u> et melosmine <u>4</u> présentent globalement le même profil en RMN, seule la position de certains signaux varie.

La comparaison des formules brutes de 1 et de 4 montre que la seule différence réside dans la présence d'un oxygène supplémentaire chez la gouregine 1. De toute évidence, cet oxygène est obligatoirement engagé dans un cycle qui, compte-tenu des données spectrales de <u>1</u>, ne peut être que le cycle C, ce qui conduit à attribuer à la gouregine un squelette de type cularine. La présence du cycle dihydrooxépinne explique les principales différences observées en <sup>1</sup>H et <sup>13</sup>C RMN pour la gouregine <u>1</u> par rapport à la melosmine 4 : en particulier, blindage de H-5', C-7, C-8a, C-1' et C-5', déblindage de  $(CH_3)_2 - \alpha$ , C-8, C-6' et C- $\alpha$ . Les cycles A et D de la gouregine portent respectivement trois et un subOCH<sub>3</sub>

H<sub>3</sub>CO

CH.

OCH<sub>3</sub>

OH

4 Melosmine

H₃CO

HO

CH<sub>3</sub>

CH<sub>3</sub>

R

 $\frac{2}{3} R = OCH_3$   $\frac{3}{3} R = OCOCH_3$ 

Les numérotations utilisées ici sont celles actuellement en vigueur pour les squelettes cularine et aporphine<sup>9</sup>.

| (b)                                    | <u>1</u> (c) | <u>1</u> (d) | <u>2</u> (c) | 3 <sup>(c)</sup> | <u>4</u> (c) (                         | e)            |
|----------------------------------------|--------------|--------------|--------------|------------------|----------------------------------------|---------------|
| H-3 : d                                | 8,16         | 8,40         | 8,27         | 8,31             | H-5 : d                                | 8,43 J=6      |
| H-4 : d                                | 7,69         | 7,84         | 7,73         | 7,74             | H-4 : d                                | 7,66 J=6      |
| H-2': d                                | 6,93         | 7,45         | 7,06         | 7,18             | H-8 : a                                | 7,17 J=3      |
| H-4': dd                               | 6,68         | 6,98         | 6,74         | 6,91             | H-10 : dd                              | 6,86 J=3 et 9 |
| H-5' : d                               | 7,10         | 7,49         | 7,28         | 7,15             | H-11 : d                               | 8,84 J=9      |
| (CH <sub>3</sub> ) <sub>2</sub> -α : s | 1,90         | 2,16         | 1,97         | 1,96             | (CH <sub>3</sub> ) <sub>2</sub> -7 : s | 1,74          |
| осн <sub>3</sub> -5 : s                | 3,96         | 3,98         | 3,94         | 3,96             | 0СН <sub>3</sub> -3 : s                | 4,00          |
| осн <sub>3</sub> -6 : s                | 4,15         | 4,15         | 4,14         | 4,06             | осн <sub>3</sub> -2 : s                | 4,17          |
| осн <sub>3</sub> -7 : s                | -            | -            | 3,78         | -                |                                        |               |
| 0Ac-7 : s                              | -            | -            | -            | 2,55             |                                        |               |
| осн <sub>3</sub> -3': s                | -            | -            | 4,10         | -                |                                        |               |
| 0Ac-3' : s                             | -            | -            | -            | 2,28             |                                        |               |

TABLEAU I : SPECTRES DE <sup>1</sup>H RMN<sup>(a)</sup>

юн

OCH<sub>3</sub>

C

**1** Gouregine

H<sub>3</sub>CO

HO

(a) Les spectres enregistrés sur appareil Varian T 60 à 60 MHz ; les déplacements chimiques sont exprimés en ppm (TMS = 0) et les constantes de couplage J en Hz.

(b)  $J_{3-4}=6$ ;  $J_{2'-4'}=3$ ;  $J_{4'-5'}=9$ . (c) Spectre enregistré dans CDCl<sub>3</sub>.

(d) Spectre enregistré dans  $C_5 D_5 N$ .

(e) Valeurs en accord avec celles récemment publiées 4.

stituants ; deux sont des méthoxyles et les deux autres sont des hydroxyles phénoliques, ce qui est corroboré par l'obtention d'un dérivé 0-diméthylé 2  $[C_{22}H_{23}NO_5; M^+ 381$  (addition de 28 u.m.a.);  $[\alpha]_{n=0}$ ; <sup>1</sup>H RMN : Tableau I] et d'un dérivé O-diacétylé 3  $[c_{24}H_{23}NO_7; M^{+} 437; F 129-131^{\circ}C$ (MeOH);  $[\alpha]_D=0; ^{1}H \text{ et } ^{13}C \text{ NMR}:$ Tableaux I et II]. L'examen comparatif des spectres de RMN de <u>1</u> et de <u>3</u> indique la présence d'un OH phénolique sur chacun des cycles A et D de <u>1</u>. La détermination de leur position exacte a été faite par comparaison, d'une part des spectres <sup>1</sup>H RMN de <u>1</u> enregistrés dans CDCl<sub>3</sub> et dans  $C_5 D_5 N_{10}^{10}$ , d'autre part des spectres <sup>1</sup>H et <sup>13</sup>C RMN de <u>1</u>, <u>2</u>, <u>3</u> et <u>4</u> enregistrés dans CDC1<sub>2</sub>. Ces analyses spectrales permettent de placer les OH phénoliques de la gouregine 1 en 7 et en 3', positions similaires à celles qu'ils occupent chez la melosmine  $\frac{4}{4}$ , ce qui est d'ailleurs en accord avec une hypothèse formulée dès le début de l'étude structurale de la gouregine.

L'hydroxyle porté par le cycle D de 1 ne peut être qu'en 3' ou 4', comptetenu du couplage AMX observé en <sup>1</sup>H RMN pour les trois protons de ce cycle. Les valeurs publiées pour les protons en 2' et 5' des cularines "classiques" <sup>11</sup> inciteraient à placer en 5' le proton le plus blindé des deux (d à 6,93 ppm, J=3 Hz), entraînant ipso facto la position 4' pour l'OH phénolique. Mais dans le cas présent cette attribution est très sujette à caution, en raison de l'influence exercée sur le H-2' par le gem-diméthyle et aussi de celle de la monosubstitution, exceptionnelle, du cycle D. Au contraire, la position en 3' de 1'0H, en accord avec la substitution de la melosmine et d'autres alcaloides isolés du Guatteria ouregou<sup>3</sup>, est étayée par la comparaison des spectres de  ${}^{13}$ C RMN de <u>1</u> et de son dérivé diacétylé 3 : chez ce dernier, le C-6' est déblindé de 4 ppm tandis que le C-1' ne subit pas d'influence ; ceci indique bien<sup>6</sup> que l'OH acétylé se

trouve en para du C-6', donc en 3'. Cette position peut d'ailleurs expliquer l'effet hyperchrome observé sur le spectre UV de <u>1</u> en milieu alcalin<sup>4</sup>; elle est, de plus, en parfait accord avec toutes les données RMN de <u>1</u>, <u>2</u> et <u>3</u>, et en particulier avec les valeurs des déblindages des protons en 2', 4' et 5' observés sur le spectre de <sup>1</sup>H RMN de <u>1</u> enregistré dans la pyridine-D5<sup>10</sup>.

L'hydroxyle phénolique porté par le cycle A de la gouregine 1 ne peut être qu'en 5 ou en 7 ; en effet, après 0-acétylation de <u>1</u>, on observe sur le spectre <sup>1</sup>H RMN de <u>3</u> le blindage d'un seul des deux méthoxyles, indiquant ainsi qu'un seul méthoxyle se trouve en ortho de l'OH phénolique qui, de ce fait, ne peut être situé en 6. La similitude des déplacements chimiques en <sup>1</sup>H RMN des méthoxyles de <u>1</u> et de <u>4</u> incite à placer ces méthoxyles en 5 et 6, et donc l'hydroxyle en 7. Ceci est conforté par la comparaison des spectres RMN de 1 et de 3 : d'une part, en <sup>1</sup>H RMN, on constate que l'acétylation n'exerce pratiquement pas d'influence sur le déplacement chimique du H-4 ; d'autre part, en <sup>13</sup>C RMN, l'acétylation entraîne un blindage caractéristique du C-7 et est sans effet sur le C-5.

Par ailleurs, sur le spectre <sup>1</sup>H RMN de la diméthylgouregine 2, on observe la présence de quatre méthoxyles dont l'un, qui n'existe pas dans la gouregine 1, résonne à 3,78 ppm. Ce fort blindage ne peut s'appliquer à un méthoxyle en 5 ou en 6, et il concerne donc l'un des deux méthoxyles en 3' ou, plus probablement, en 7. Cette dernière hypothèse, non encore établie avec certitude, va à l'encontre des données bibliographiques, non extrapolables ici, concernant les valeurs des déplacements chimiques des méthoxyles en 7 et en 3' chez les cularines "classiques"<sup>11,12</sup>. Il est à noter que ce blindage du méthoxyle en 7 est plus important que celui observé, à 3,89

|                                    | <u>1</u> <sup>(b)</sup> <u>3</u> <sup>(b)</sup> |                     | <u>4</u> (c)                       |                      |
|------------------------------------|-------------------------------------------------|---------------------|------------------------------------|----------------------|
| C-1                                | 160,3                                           | 161,2               | C-6a                               | 163,0                |
| C-3                                | 140,5                                           | 140,8               | C-5                                | 140,2                |
| C-4                                | 114,0                                           | 113,6               | C-4                                | 113,9                |
| C-4a                               | 127,1                                           | 131,8               | C-3a                               | 127,3                |
| C-5                                | 142,4 <sup>(d)</sup>                            | 142,0               | C-3                                | 146,7                |
| C-6                                | 142,8 <sup>(d)</sup>                            | 145,7               | C-2                                | 142,5 <sup>(d)</sup> |
| C-7                                | 138,3                                           | 134,1               | C-1                                | 142,6 <sup>(d)</sup> |
| c-8                                | 136,1                                           | 141,0               | C-1a                               | 111,5                |
| C-8a                               | 117,1                                           | 117,1               | C-1b                               | 119,4                |
| C-a                                | 45,8                                            | 45,9                | C-7                                | 42,1                 |
| C-1'                               | 140,3                                           | 140,7               | C-7a                               | 144,6                |
| C-2'                               | 114,1                                           | 120,1               | C-8                                | 112,5                |
| C-3'                               | 154,4                                           | 147,6               | C-9                                | 156,0                |
| C-4 '                              | 114,7                                           | 121,1               | C-10                               | 113,5                |
| C-5 '                              | 122,3                                           | 122,5               | C-11                               | 129,6                |
| C-6'                               | 150,0                                           | 154,0               | C-11a                              | 121,3                |
| (CH <sub>3</sub> ) <sub>2</sub> -α | 27,7                                            | 27,6                | (CH <sub>3</sub> ) <sub>2</sub> -7 | 32,6                 |
| осн <sub>3</sub> -5                | 61,7 <sup>(e)</sup>                             | 61,4 <sup>(d)</sup> | осн <sub>3</sub> -3                | 61,1                 |
| осн <sub>3</sub> -6                | 61,2 <sup>(e)</sup>                             | 61,2 <sup>(d)</sup> | осн <sub>3</sub> -2                | 61,1                 |
| -                                  |                                                 | 5                   | -                                  | 1                    |

TABLEAU II : SPECTRES DE <sup>13</sup>C RMN<sup>(a)</sup>

 (a) Spectres enregistrés dans CDCl<sub>3</sub>; déplacements chimiques exprimés en ppm (TMS=0).

- (b) Spectres enregistrés sur appareil Bruker WP 60 à 15,08 MHz.
- (c) Spectres enregistrés sur appareil Varian CFT 20 à 25,2 MHz.

(d)(e) Valeurs interchangeables dans une colonne verticale.



ppm, pour le méthoxyle similaire de la diméthylmelosmine<sup>4</sup>; ce fait pourrait s'expliquer par la liaison existant, dans le composé <u>2</u>, entre le C-8 et l'oxygène du cycle C. La présence de ce cycle dihydrooxépinne explique d'ailleurs également l'absence de blindage du H-5' de la diacétylgouregine <u>3</u>, alors que le proton correspondant de la diacétylmelosmine subit un blindage, normal dans ce cas, de 0,42 ppm<sup>4</sup>.

La structure <u>1</u> de la gouregine, ainsi déduite de l'analyse spectrale, a été confirmée par la diffraction des rayons X sur un monocristal de O-diacétylgouregine 3. Les données cristallographiques sont : système orthorombique, groupe spatial Pbcn, a=18,171 (4), b=8,175 (2), c=29,312 (6) Å, Z=8 et  $d_c=1,33$  g.cm<sup>-3</sup>. La structure résolue par les méthodes directes<sup>13</sup> a été affinée jusqu'à un facteur résiduel de 0,055<sup>14</sup>. Les coordonnées atomiques sont rassemblées dans le Tableau III<sup>15</sup>. les distances interatomiques et les angles de valence dans le Tableau IV. La molécule est représentée en perspective sur la Figure. Entre les deux parties aromatiques on calcule un angle dièdre de 126°, le cycle C étant plié le long de  $0-C\alpha$ .

La gouregine possède donc la structure <u>1</u> et elle est intéressante à plusieurs titres.

Tout d'abord, elle constitue le premier exemple d'une nouvelle classe d'alcaloïdes isoquinoléïques, caractérisée par un squelette gem-diméthyl-α tétradéhydrocularine.

De plus, c'est la première fois qu'un alcaloïde apparenté aux cularines est isolé à partir d'une Annonacée<sup>16</sup> et son profil de substitution (cycle A trisubstitué, <u>gem</u>-diméthyle) présente, pour une espèce du genre <u>Guatteria</u>, un intérêt chimiotaxonomique certain<sup>3</sup>.

Enfin, la biogenèse de la gouregine pose un problème intéressant. Elle ne doit pas provenir, comme les cularines "classiques", du couplage oxydatif intramoléculaire d'une hydroxy-8 benzylisoquinoléine<sup>9</sup>. Il est probable qu'elle se forme directement à partir de la melosmine ; une hypothèse faisant intervenir un réarrangement du squelette de la melosmine, consécutif à une oxydation en 11-11a, peut être formulée selon le schéma indiqué ciaprès<sup>17</sup>. De fait, le traitement de la melosmine 4 par du réactif de Fenton [radicaux hydroxyle engendrés par décomposition de peroxyde d'hydrogène par du sulfate ferreux (18,19] conduit à la gouregine 1, formée avec un rendement de 90%.



### M. LEBOEUF et al.

|            | x         | Y          | Z        | <b>U</b> * |
|------------|-----------|------------|----------|------------|
| C-1        | -939 (3)  | -154 (7)   | 3030 (2) | 43 (7)     |
| N-2        | -1148 (3) | 1252 (6)   | 2859 (2) | 53 (7)     |
| C-3        | -727 (4)  | 2618 (8)   | 2938 (2) | 62 (9)     |
| C-4        | -97 (4)   | 2627 (9)   | 3169 (2) | 56 (9)     |
| C-4A       | 176 (3)   | 1122 (7)   | 3347 (2) | 44 (7)     |
| C-5        | 843 (3)   | 1058 (8)   | 3582 (2) | 43 (8)     |
| <b>C-6</b> | 1082 (3)  | -381 (8)   | 3774 (2) | 47 (8)     |
| C-7        | 652 (3)   | -1797 (7)  | 3724 (2) | 49 (7)     |
| C-8        | -6 (3)    | -1776 (7)  | 3493 (2) | 45 (7)     |
| C-8A       | -269 (3)  | -319 (7)   | 3285 (2) | 42 (7)     |
| C-a        | -1445 (3) | -1607 (7)  | 2915 (2) | 40 (7)     |
| C-1'       | -1636 (3) | -2526 (6)  | 3358 (2) | 37 (6)     |
| C-2'       | -2351 (3) | -2684 (7)  | 3519 (2) | 44 (8)     |
| C-3'       | -2505 (3) | -3592 (7)  | 3902 (2) | 39 (7)     |
| C-4'       | -1962 (4) | -4372 (8)  | 4143 (2) | 53 (9)     |
| C-5'       | -1251 (4) | -4233 (8)  | 3994 (2) | 53 (9)     |
| C-6'       | -1093 (3) | -3300 (7)  | 3614 (2) | 39 (7)     |
| o          | -353 (2)  | -3259 (5)  | 3471 (1) | 50 (5)     |
| 0-5        | 1238 (2)  | 2483 (5)   | 3632 (1) | 51 (6)     |
| 0-6        | 1728 (2)  | -546 (6)   | 4009 (2) | 61 (7)     |
| 0-7        | 911 (2)   | -3224 (5)  | 3918 (1) | 57 (5)     |
| 0-31       | -3255 (2) | -3830 (5)  | 4005 (1) | 51 (5)     |
| 0-5*       | 230 (3)   | -2705 (6)  | 4536 (1) | 72 (6)     |
| 0-7*       | -3131 (3) | -2908 (6)  | 4721 (1) | 61 (7)     |
| C-1*       | -1063 (4) | -2751 (9)  | 2569 (2) | 54 (9)     |
| C-2*       | -2148 (4) | -999 (9)   | 2681 (2) | 49 (8)     |
| C-3*       | 1823 (6)  | 2691 (15)  | 3315 (4) | 83 (17)    |
| C-4*       | 1872 (6)  | 560 (14)   | 4378 (4) | 78 (16)    |
| C-5*       | 663 (4)   | -3558 (8)  | 4347 (2) | 50 (9)     |
| C-6*       | 990 (5)   | -5075 (9)  | 4533 (2) | 86 (12)    |
| C-7*       | -3512 (4) | -3512 (8)  | 4433 (2) | 55 (9)     |
| C-8*       | -4278 (4) | -4067 (12) | 4474 (3) | 73 (12)    |

# TABLEAU III: COORDONNEES ATOMIQUES $(x10^4)$ DES ATOMES NON-HYDROGENEL'écart-type figure entre parenthèse - u\*=facteur de<br/>température isotrope équivalent

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                         |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-1 - N-2 1,310 (8                                                        | ) $C-\alpha - C-2^*$                    | 1,533 (9)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-1 - C-8A 1,435 (8                                                       | ) $C=1^{1}=C=2^{1}$                     | 1,388 (8)  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-1 - C-α 1,539 (8                                                        | ) $C-1' - C-6'$                         | 1,392 (8)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-2 - C-3 1,372 (9                                                        | ) $C-2' - C-3'$                         | 1,375 (8)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-3 - C-4 1,330 (1)                                                       | 0)  C-3! - C-4!                         | 1,370 (9)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4 - C-4A 1,427 (9                                                       | ) $C-3' = 0-3'$                         | 1,409 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4A = C-5 1,396 (9                                                       | ) $C-4! - C-5!$                         | 1,368 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4A - C-8A 1,441 (8                                                      | ) $C-5' - C-6'$                         | 1,381 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-5 - C-6 1,375 (9                                                        | ) $C-6! = 0$                            | 1,408 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-5 - 0-5 1,376 (8                                                        | ) 0-5 - C-3*                            | 1,422 (11) |
| $C-6 = O-6$ $1,366 (7)$ $O-7 = C-5^*$ $1,364 (7)$ $C-7 = C-8$ $1,373 (8)$ $O-3^* = C-7^*$ $1,363 (7)$ $C-7 = O-7$ $1,380 (7)$ $O-5^* = C-5^*$ $1,187 (8)$ $C-8 = O$ $1,421 (8)$ $O-7^* = C-7^*$ $1,198 (8)$ $C-8 = O$ $1,369 (7)$ $C-5^* = C-6^*$ $1,479 (10)$ $C-\alpha = C-1^*$ $1,539 (7)$ $C-7^* = C-6^*$ $1,479 (10)$ $C-\alpha = C-1^*$ $1,544 (9)$ $C-7^* = C-6^*$ $1,470 (11)$ $N-2 = C-1 = C-a$ $114,9 (5)$ $C-1^* = C-\alpha = C-2^*$ $110,4 (5)$ $C-8a = C-1 = C-\alpha$ $112,3 (5)$ $C-1^* = C-\alpha = C-2^*$ $106,0 (5)$ $C-1 = N-2 = C-3$ $119,3 (5)$ $C-1^* = C-\alpha = C-2^*$ $106,0 (5)$ $C-4 = C-3A = C-4A$ $118,8 (6)$ $C-2^* = C-1^* = C-4^*$ $112,1 (5)$ $C-3 = C-4$ $C-4A = 124,7 (7)$ $C-\alpha = C-1^* = C-4^*$ $112,1 (5)$ $C-4 = C-4A = C-5$ $121,0 (6)$ $C-1^* = C-2^* = C-3^* = 121,2 (5)$ $C-4 = C-4A = C-5$ $121,0 (6)$ $C-1^* = C-3^* = O-3^* = 116,4 (5)$ $C-4 = C-5 = O-5$ $112,2 (5)$ $C-4^* = C-5^* = O-3^* = 116,5 (6)$ $C-4 = C-5 = O-5$ $112,2 (5)$ $C-4^* = C-5^* = O-5^* = 122,6 (5)$ $C-5 = C-6 = O-6$ $124,2 (5)$ $C-1^* = C-6^* = O^* = 120,6 (6)$ $C-7 = C-6 = O-6$ $124,2 (5)$ $C-1^* = C-6^* = O^* = 126,6 (5)$ $C-7 = C-7 = C-8$ $122,2 (5)$ $C-1^* = C-5^* = C-6^* = 126,0 (6)$ $C-7 = C-7 = C-8$ $122,7 (5)$ $C-5^* = O-5^* = C-6^* = 126,6 (5)$ $C-7 = C-7 = C-8$ $124,2 (5)$ $C-1^* = C$ | C-6 - C-7 1,405 (8                                                        | ) $0-6 - C-4*$                          | 1,434 (12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-6 - 0-6 1,366 (7                                                        | ) 0-7 - C-5*                            | 1,364 (7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-7 - C-8 1,373 (8                                                        | ) 0-3' - C-7*                           | 1,363 (7)  |
| $C-8$ $C-8$ $1,421$ (8) $0-7* = C-7*$ $1,198$ (8) $C-8$ $0$ $1,369$ (7) $C-5* = C-6*$ $1,479$ (10) $C-\alpha$ $C-1*$ $1,539$ (7) $C-7* = C-8*$ $1,470$ (11) $C-\alpha$ $C-1*$ $1,544$ (9) $C-7* = C-8*$ $1,470$ (11) $N-2$ $C-1$ $C-\alpha$ $114,9$ (5) $C-1* = C-\alpha = C-2*$ $110,4$ (5) $C-8a$ $C-1$ $C-\alpha$ $114,9$ (5) $C-1* = C-\alpha = C-2*$ $106,0$ (5) $C-1$ $N-2$ $C-3$ $119,3$ (5) $C-\alpha = C-1* = C-2*$ $106,0$ (5) $C-1$ $N-2$ $C-3$ $119,3$ (5) $C-\alpha = C-1* = C-2*$ $106,0$ (5) $C-4$ $C-4a$ $124,7$ (7) $C-\alpha = C-1* = C-2*$ $122,9$ (5) $N-2$ $C-3$ $C-4$ $124,7$ (7) $C-\alpha = C-1* = C-2*$ $122,9$ (5) $N-2$ $C-3$ $C-4$ $124,7$ (7) $C-\alpha = C-1* = C-2*$ $122,9$ (5) $C-4$ $C-4a$ $C-5$ $1124,7$ (7) $C-\alpha = C-1* = C-2*$ $122,9$ (5) $C-4$ $C-4A$ $C-5$ $121,0$ (6) $C-1* = C-3* = C-3*$ $121,2$ (5) $C-4$ $C-4A$ $C-6A$ $117,6$ (5) $C-2* = C-3* = O-3*$ $116,4$ (5) $C-4$ $C-5$ $C-6$ $119,1$ (5) $C-1* = C-6* = 0-5*$ $122,6$ (5) $C-5$ $C-6$ $C-7$ $119,1$ (5) $C-1* = C-6* = 0-5*$ $122,6$ (5) $C-7$ $C-6$ $C-7$ $119,1$ (5) $C-1* = C-6* = 0-5*$ $122,6$ (5) $C-7$ $C-6$ $C-7$ $120,7$ (5) $C-6 = 0-6$ $11$                                                                                                                                                                             | C-7 - 0-7 1,380 (7                                                        | ) 0-5* - C-5*                           | 1,187 (8)  |
| C-801,369 (7)C-5*C-6*1,479 (10)C- $\alpha$ C-1'1,539 (7)C-7*C-6*1,470 (11)C- $\alpha$ C-1*1,544 (9)C-7*C-8*1,470 (11)N-2C-1C- $\alpha$ 114,9 (5)C-1'C- $\alpha$ C-2*110,4 (5)C-8AC-1C- $\alpha$ 123,2 (5)C-1'C- $\alpha$ C-2*106,0 (5)C-1N-2C-3119,3 (5)C- $\alpha$ C-1'C- $\alpha$ C-2*122,9 (5)N-2C-3C-4124,7 (7)C- $\alpha$ C-1'C-2'122,9 (5)N-2C-3C-4124,7 (7)C- $\alpha$ C-1'C-2'122,9 (5)N-2C-3C-4124,7 (7)C- $\alpha$ C-1'C-2'122,9 (5)N-2C-3C-4124,7 (7)C- $\alpha$ C-1'C-2'122,9 (5)C-4C-4AC-5121,0 (6)C-1'C-2'C-3'121,2 (5)C-4C-4AC-5121,0 (6)C-1'C-2'C-3'121,2 (5)C-4C-4AC-8A121,3 (5)C-2'C-3'0-3'121,5 (5)C-4AC-5-0.5118,2 (5)C-1'C-6'120,0 (6)C-4C-5-0.5118,2 (5)C-1'C-6'120,0 (6)C-5-0.5121,2 (5)C-1'C-6'0120,4 (5)C-5-0.5121,2 (5)C-1'C-6'0120,4 (5)C-7-0.5124,2 (5)C-1'C-6'0 <td< td=""><td>C-8 - C-8A 1,421 (8</td><td>) 0-7* - C-7*</td><td>1,198 (8)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-8 - C-8A 1,421 (8                                                       | ) 0-7* - C-7*                           | 1,198 (8)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-8 - 0 1,369 (7                                                          | ) C-5* - C-6*                           | 1,479 (10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-α - C-1' 1,539 (7                                                       | ) C-7* - C-8*                           | 1,470 (11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-α - C-1* 1,544 (9                                                       | )                                       |            |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-2 - C-1 - C-8A 121,8                                                    | (5) $C-1' - C-\alpha - C-1^*$           | 111,1 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N-2 - C-1 - C-\alpha = 114,9$                                            | (5) $C-1' - C-\alpha - C-2^*$           | 110,4 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C-8A - C-1 - C-\alpha$ 123,2                                             | (5) $C-1^* - C-\alpha - C-2^*$          | 106,0 (5)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-1 - N-2 - C-3 119,3                                                     | (5) $C-\alpha - C-1' - C-2'$            | 122,9 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-2 - C-3 - C-4  124,7                                                    | (7) $C-\alpha - C-1! - C-6!$            | 121,1 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-3 - C-4 - C-4A 118,8                                                    | (6) $C-2' - C-1' - C-6'$                | 116,0 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4 - C-4A - C-5 121,0                                                    | (6) $C-1' - C-2' - C-3'$                | 121,2 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4 - C-4A - C-8A 117,6                                                   | (5) $C-2' - C-3' - C-4'$                | 121,7 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-5 - C-4A - C-8A = 121,3                                                 | $(5) \qquad C-2' - C-3' - 0-3'$         | 116,4 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4A - C-5 - C-6 120,6                                                    | (6) $C-4' - C-3' - 0-3'$                | 121,5 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-4A - C-5 - 0-5  118,2                                                   | (5) $C-3' - C-4' - C-5'$                | 118,5 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-6 - C-5 - 0-5  121,2                                                    | (5) $C-4' - C-5' - C-6'$                | 120,0 (6)  |
| $C-5$ $-C-6$ $-0-6$ $124,2$ (5) $C-1' - C-6' = 0$ $120,4$ (5) $C-7$ $-C-6$ $-0-6$ $116,7$ (5) $C-5' - C-6' = 0$ $116,9$ (5) $C-6$ $-C-7$ $-C-8$ $121,7$ (5) $C-8 = 0$ $-C-6'$ $116,5$ (4) $C-6$ $-C-7$ $-0-7$ $117,6$ (5) $C-5 = 0-5 = -C-3^*$ $114,9$ (6) $C-8$ $-C-7$ $-0-7$ $120,7$ (5) $C-6$ $-0-6$ $-C-4^*$ $118,3$ (6) $C-7$ $-C-8$ $-C-8A$ $121,0$ (5) $C-7$ $-0-7$ $-C-5^*$ $115,9$ (5) $C-7$ $-C-8$ $-C-8A$ $121,0$ (5) $C-7$ $-0-7$ $-C-7^*$ $120,1$ (5) $C-7$ $-C-8$ $-0$ $124,5$ (5) $-7$ $-C-7^*$ $120,1$ (5) $C-1$ $-C-8A$ $-C-4A$ $117,7$ (5) $0-7$ $-C-5^*$ $-0-5^*$ $112,0$ (6) $C-1$ $-C-8A$ $-C-8$ $116,2$ (5) $0-7^* - C-5^* - C-6^*$ $112,0$ (6) $C-4A$ $-C-8A$ $-C-8$ $116,2$ (5) $0-3^* - C-7^* - 0-7^*$ $122,0$ (6) $C-1$ $-C-\alpha$ $-C-1^*$ $109,1$ (4) $0-3^* - C-7^* - C-8^*$ $110,0$ (6) $C-1$ $-C-\alpha$ $-C-1^*$ $110,2$ (5) $0-7^* - C-7^* - C-8^*$ $128,0$ (7)                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-5 - C-6 - C-7 119,1                                                     | $(5) \qquad C-1' - C-6' - C-5'$         | 122,6 (5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-5 - C-6 - 0-6 = 124,2                                                   | (5) $C-1' - C-6' = 0$                   | 120,4 (5)  |
| $C-6$ $C-7$ $C-8$ $121,7$ (5) $C-8$ $-0$ $-C-6^{-1}$ $116,5$ (4) $C-6$ $-C-7$ $-0.7$ $117,6$ (5) $C-5$ $-0.5$ $-C-3^{+}$ $114,9$ (6) $C-8$ $-C-7$ $-0.7$ $120,7$ (5) $C-6$ $-0.6$ $-C-4^{+}$ $118,3$ (6) $C-7$ $-C-8$ $-C-8A$ $121,0$ (5) $C-7$ $-0.7$ $-C-5^{+}$ $115,9$ (5) $C-7$ $-C-8$ $-0$ $114,5$ (5) $C-7$ $-0.7$ $-C-7^{+}$ $120,1$ (5) $C-8A$ $-C-8$ $-0$ $124,5$ (5) $0-7$ $-C-5^{+}$ $-0.5^{+}$ $122,0$ (6) $C-1$ $-C-8A$ $-C-4A$ $117,7$ (5) $0-7$ $-C-5^{+}$ $-0.5^{+}$ $126,0$ (6) $C-1$ $-C-8A$ $-C-8$ $126,0$ (5) $0-7^{+}$ $-C-6^{+}$ $112,0$ (6) $C-1$ $-C-8A$ $-C-8$ $116,2$ (5) $0-3^{+}$ $-C-7^{+}$ $0-7^{+}$ $C-1$ $-C-\alpha$ $-C-1^{+}$ $109,1$ (4) $0-3^{+}$ $-C-7^{+}$ $-C-8^{+}$ $110,0$ (6) $C-1$ $-C-\alpha$ $-C-1^{+}$ $110,0$ (5) $0-7^{+}$ $-C-8^{+}$ $128,0$ (7) $C-1$ $-C-\alpha$ $-C-2^{+}$ $110,2$ (5) $0-7^{+}$ $-C-8^{+}$ $128,0$ (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C-7 - C-6 - 0-6 116,7                                                     | (5)  C-5' - C-6' = 0                    | 116,9 (5)  |
| $C-0$ $C-7$ $-6-7$ $117, 6$ $(5)$ $C-5$ $-0.5$ $-C-3^{+}$ $114, 9$ $(6)$ $C-8$ $C-7$ $-0.7$ $120, 7$ $(5)$ $C-6$ $-0.6$ $-C-4^{*}$ $118, 3$ $(6)$ $C-7$ $-C-8$ $-C-8A$ $121, 0$ $(5)$ $C-7$ $-0.7$ $-C-5^{*}$ $115, 9$ $(5)$ $C-7$ $-C-8$ $-0$ $114, 5$ $(5)$ $C-7$ $-0.7$ $-C-5^{*}$ $120, 1$ $(5)$ $C-8A$ $C-8$ $0$ $124, 5$ $(5)$ $0-7$ $-C-7^{*}$ $122, 0$ $(6)$ $C-1$ $-C-8A$ $-C-4A$ $117, 7$ $(5)$ $0-7$ $-C-5^{*}$ $-C-6^{*}$ $112, 0$ $(6)$ $C-1$ $-C-8A$ $-C-8$ $126, 0$ $(5)$ $0-7^{*}$ $C-5^{*}$ $-C-6^{*}$ $122, 0$ $(6)$ $C-4A$ $-C-8A$ $-C-8$ $116, 2$ $(5)$ $0-3^{*}$ $-C-7^{*}$ $0-7^{*}$ $122, 0$ $(6)$ $C-1$ $-C-\alpha$ $-C-1^{*}$ $109, 1$ $(4)$ $0-3^{*}$ $-C-7^{*}$ $-C-8^{*}$ $110, 0$ $(6)$ $C-1$ $-C-\alpha$ $-C-1^{*}$ $110, 2$ $(5)$ $0-7^{*}$ $-C-8^{*}$ $128, 0$ $(7)$ $C-1$ $-C-\alpha$ $-C-2^{*}$ $110, 2$ $(5)$ $0-7^{*}$ $-C-8^{*}$ $128, 0$ $(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C-6 - C-7 - C-8 121,7                                                     | $(5)   C-8 = 0 = C-6^{1}$               | 110,5 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $c_{-0} - c_{-7} - 0_{-7} = 117,6$                                        | $(5)  (-5) = 0 - 5 = 0 - 3^*$           | 114,9 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $c_{-8} - c_{-7} - 0_{-7} = 120,7$                                        | $(5)  (-6) = 0 - 6 - C - 4^*$           | 118,3 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C = 7 = C = 0 = C = 8A = 121,0                                            | (5) $(-7) = 0-7 = 0-5*$                 | 115,9(5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C = 7 = C = 0 = 0 114,5                                                   | $(5) \qquad (-3) = (-3) = (-7)$         | 120, 1(5)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C = 0A = C = 0 = 0 124,5                                                  | $(5) \qquad 0-7 \qquad 0.5^* = 0.6^*$   | 166,0(0)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C = 1 = C = 0 = 0 = 0 = 4A = 11/1/1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = | $(5) \qquad 0 - 7 = 0 - 5^* = 0 - 5^*$  | 126 0 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_{-4A} = C_{-8A} = C_{-8} = 116.9$                                      | $(5) \qquad 0 - 31 = 0 - 7^* = 0 - 7^*$ | 122 0 (6)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C_{-1} = C_{-1} = C_{-1} = 100$                                          | $(4) \qquad 0=3! = 0=7* = 0=7*$         | 110.0 (6)  |
| $C_{-1} = C_{-\alpha} = C_{-2}^*$ 110,2 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_{-1} = C_{-\alpha} = C_{-1}^{-1} = 10^{-1}$                            | (5) $0-7^* - C-7^* - C-8^*$             | 128.0 (7)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{-1} = C_{-\alpha} = C_{-2}^*$ 110.2                                   | (5)                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                         |            |

<u>TABLEAU IV</u> : DISTANCES (Å) ET ANGLES DE VALENCE (°) L'écart-type figure entre parenthèses

#### M. LEBOEUF et al.

### REFERENCES

- Partie XXXIX dans la série "Alcaloïdes des Annonacées"; partie XXXVIII: R. HOCQUEMILLER, C. DEBI-TUS, F. ROBLOT et A. CAVÉ, Tetrahedron Lett., sous presse (1982).
- Boursier du Ministère Espagnol de l'Education et de la Science ; adresse permanente : Departamento de Farmacognosia y Farmacodinamia, Facultad de Farmacia de la Universidad de Valencia, España.
- M. LEBŒUF, D. CORTES, R. HOCQUE-MILLER et A. CAVÉ, travaux en cours.
- 4. V. ZABEL, W.H. WATSON, C.H. PHOEBE Jr., J.E. KNAPP, P.L. SCHIFF Jr. et D.J. SLATKIN, J. Nat. Prod., <u>45</u>, 94 (1982). Nous remercions le Dr. D.J. SLATKIN (University of Pittsburgh, USA), de l'envoi d'un échantillon de melosmine.
- 5. Le spectre <sup>1</sup>H RMN de la melosmine a été récemment décrit<sup>4</sup>. Les attributions <sup>13</sup>C RMN de le melosmine ont été faites pour une part par comparaison avec celles publiées pour les alcaloïdes aporphiniques<sup>6</sup> et en particulier la 0-méthylmoschatoline<sup>7</sup>; les attributions <sup>13</sup>C RMN de la gouregine ont été déduites de celles de la melosmine d'une part et de la cularine<sup>8,9</sup> d'autre part.
- 6. L.M. JACKMAN, J.C. TREWELLA, J.L. MONIOT, M. SHAMMA, R.L. STEPHENS,
  E. WENKERT, M. LEBOEUF et A. CAVÉ,
  J. Nat. Prod., <u>42</u>, 437 (1979).
- A.J. MARSAIOLI, A.F. MAGALHAES, E.A. RUVEDA et F. DE A.M. REIS, Phytochemistry, <u>19</u>, 995(1980).
- E.W. HAGAMAN, Org. Magn. Res., <u>8</u>, 389 (1976).
- 9. M. SHAMMA, The Isoquinoline Alkaloids, Academic Press, New-York, 153 (1972); M. SHAMMA et J.L. MONIOT, Isoquinoline Alkaloids Research 1972-1977, Plenum Press, New-York, 107 (1978).

- G. SEVERINI RICCA et C. CASAGRANDE, Gazz. Chim. Ital., <u>109</u>, 1 (1979).
- 11. N.S. BHACCA, J. CYMERMAN CRAIG, R.H.F. MANSKE, S.K. ROY, M. SHAMMA et W.A. SLUSARCHYK, Tetrahedron, <u>22</u>, 1467 (1966).
- T. KAMETANI, S. SHIBUYA, C. KIBAYASHI et S. SASAKI, Tetrahedron Lett., 3215 (1966).
- C. RICHE, Acta Cryst., <u>A29</u>, 133 (1973).
- 14. Les intensités ont été enregistrées sur un diffractomètre Philips PW 1100 avec la radiation K $\alpha$  du cuivre  $(\lambda = 1,5418 \text{ Å})$ . Sur un total de 3805 réflexions mesurées, 1490  $(I \ge 2\sigma(I))$ ont été considérées comme observées. Les coordonnées et les paramètres thermiques ont été affinés par la méthode des moindres carrés avec le programme SHELX 76 (G. Sheldrix, University of Cambridge, 1976). Les atomes d'hydrogène ont été localisés sur des séries de Fourier différence, puis affinés avec deux facteurs de température isotrope (méthyles et autres). Schéma de pondération final  $W=1/(\sigma^2(F)+0.008 F^2)$ .
- 15. Les coefficients d'agitation thermique anisotropes, les coordonnées des atomes d'hydrogène, ainsi que la liste des facteurs de structure observés et calculés, ont été déposés au Cambridge Crystallographic Data Centre (C.C.D.C.).
- M. LEBŒUF, A. CAVÉ, P.K. BHAUMIK,
   B. MUKHERJEE et R. MUKHERJEE, Phytochemistry, sous presse (1982).
- Les auteurs remercient le Dr J. LEVY (Université de Reims, France) de ses intéressantes suggestions à ce sujet.
- 18. H.S.H. FENTON, J. Chem. Soc., <u>65</u> 899 (1894).
- 19. L.F. FIESER et M. FIESER, Reagents for Organic Synthesis, John Wiley and Sons, New-York, Vol. 1, 472 (1967).

2896